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Appendix S1.  More details of the genome sequencing procedure and the indices used to 1 

measure gene flow. 2 

 3 

Viral Genome Sequencing.  All samples were first sequenced using the traditional 4 

PCR/Sanger high-throughput sequencing pipeline at the JCVI (Dugan et al. 2008).  After 5 

sequencing, the sequences were trimmed to remove primer sequence as well as low quality 6 

residues, and segments were assembled individually using the small genome assembler Elvira 7 

(http://elvira.sourceforge.net/).  Sequencing and assembly difficulties associated with the high 8 

level of variability in the sample set (e.g. due to the mixed infection of multiple influenza 9 

subtypes) led to the processing of all samples using the next generation sequencing pipeline at 10 

JCVI that includes the 454/Roche GS-FLX and the Illumina Genome Analyzer II.  Viral RNA was 11 

first reverse transcribed and amplified by multi-segment RT-PCR (M-RTPCR) (Zhou et al. 2009).  12 

The cDNA for each sample was primed with barcoded random hexamers using the SISPA 13 

protocol (Djikeng et al. 2008).  One library was prepared for sequencing on the 454/Roche GS-14 

FLX platform using Titanium chemistry while the other was made into a library for sequencing 15 

on the Illumina Genome Analyzer II. 16 

The sequence reads from the GS-FLX data were sorted by barcode, trimmed, and 17 

searched by TBLASTX against custom nucleotide databases of full-length influenza A segments 18 

downloaded from GenBank to filter out both chimeric influenza sequences and non-influenza 19 

sequences amplified during the random hexamer-primed amplification.  The filtered GS-FLX 20 

reads were then binned by segment, and de novo assembled using CLC Bio’s 21 

clc_novo_assemble program.  Because of the short read length of the sequences obtained from 22 

the Illumina Genome Analyzer II, these were not subjected to the TBLASTX filtering step.  Both 23 

GS-FLX and Illumina reads were then mapped to the selected reference influenza A virus 24 

segments using the clc_ref_assemble_long program.  At loci where both GS-FLX and Illumina 25 

sequence data agreed on a variation compared to the reference sequence, the latter was 26 



2 
 

updated to reflect the difference.  A final mapping of all next generation sequences to the 1 

updated reference sequences was then performed.  All sequences generated here have been 2 

submitted to GenBank and assigned accession numbers (Table S1). 3 

 4 

Phylogenetic Analysis 5 

Panoramic phylogenies were estimated using a rapid hill-climbing search method and the 6 

GTRGAMMA nucleotide substitution model implemented in RAxML v7.04 (Stamatakis 2006). 7 

The tree search was initiated with a random maximum parsimony tree.  200 independent tree 8 

searches with different random maximum parsimony starting trees were performed to obtain the 9 

phylogeny with the highest likelihood score.  Major lineages of North American wild bird avian 10 

influenza viruses were identified and extracted for further analyses. 11 

For more accurate phylogenetic analysis of NA-WB-AIV lineages, we used the heuristic 12 

search method implemented in PhyML v2.4.5 (Guindon et al. 2009).  This allowed us to 13 

determine the maximum likelihood phylogenetic tree by optimizing the tree topology and branch 14 

lengths on the sequence data.  The tree search was initiated using a BIONJ tree and then 15 

employed nearest-neighbor interchange branch-swapping.  All phylogenetic analyses utilized 16 

the General Time Reversible (GTR) model of nucleotide substitution which allows variable rates 17 

of substitution between the A, T, C and G nucleotides, a proportion of invariable sites (I), and 18 

four classes of rate variation among nucleotide sites (+Г4).  The RAxML and PhyML trees were 19 

extremely similar in topology. 20 

Pseudo-replicates for each data set were generated by resampling the columns of 21 

sequence alignment with replacement, and then used in bootstrap analyses to determine 22 

phylogenetic robustness.  Because of the very large size of the ‘panoramic’ data set (>5,000 23 

sequences), the neighbor-joining clustering method (as implemented in the PAUP* package – 24 

Swofford et al. 2003) was used to infer bootstrap trees in this case.  In the case of the North 25 

American wild bird AIV lineage, where more phylogenetic accuracy is required, we used the 26 
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maximum likelihood bootstrap method implemented in PhyML.  More background information 1 

about the types of phylogenetic analyses performed here can be found in Lam et al. (2010).  2 

All AIV gene segments were subject to the independent phylogenetic and 3 

phylogeographic analyses, with the exception that the only HA and NA gene segments analyzed 4 

were from subtypes H3, H4, N6, and N8.  The other subtypes had HA and NA data sets of 5 

insufficient size (<200 sequences or 8 sampling localities) for meaningful phylogeographic 6 

analysis. 7 

 8 

Measuring Gene Flow Between Populations 9 

Three summary statistics – (i) the Fixation index (FST), (ii) modified Slatkin-Maddison’s s (σ), 10 

and (iii) the rate of state transition (q) – were used to determine the level of gene flow between 11 

two localities from either the sample of virus sequences in the two localities or from the inferred 12 

phylogenetic trees. 13 

(i) FST.  FST is derived from the F-statistics developed by Sewall Wright to study 14 

population structure (Wright 1942).  It was later modified and generalized for genetic sequence 15 

data sampled in different populations (Nei 1982; Lynch & Crease 1990).  Our study employed a 16 

FST similar to that generalized by Hudson et al. (1992) using the GTR substitution model to 17 

estimate pairwise genetic distances (δxy) between two nucleotide sequences (x and y).  FST 18 

between the populations sampled at geographical states i and j is defined as, 19 

 20 

Hw is the average within-population variation in states i and j, which is defined as, 21 

 22 

where ni and nj are the total numbers of sequences sampled from the populations at 23 

geographical states i and j, respectively.  ix and iy are the xth and yth sequences in the 24 
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population sampled in geographical state i, while jx and jy are the xth and yth sequences in the 1 

population sampled in geographical state j.   2 

Hb is the between-population variation of state i and j, which is defined as, 3 

 4 

This is the average pairwise comparison of sequences sampled in the populations of 5 

geographical states i and j.  Extreme FST estimates of 0 and 1 indicate no and complete 6 

population subdivision, respectively.  FST was calculated for each pair of geographical states in 7 

the NA-WB-AIV data sets, and was plotted against the spatial distance (km) between each pair 8 

of geographical states (Fig. S2).  Geographical states with too few sampled sequences (n≤5 or 9 

less than 1% of all sequences) were excluded.  The PAUP* program (Swofford 2003) was used 10 

to estimate the GTR+I+Г4 genetic distance between sequences.  A PERL script implementing 11 

the calculation of FST from the genetic distances is available upon request. 12 

 (ii) Modified Slatkin-Maddison’s s.  Slatkin and Maddison proposed and demonstrated 13 

that the minimum number of geographical state change (s) (between two geographical states) 14 

observed in the phylogeny provides an estimate of the level of gene flow between these 15 

populations (Slatkin & Maddison 1989; Hudson et al. 1992), 16 

 17 

where N is the population size and m is the migration rate between the populations.  18 

In situations where the sampling frequencies are highly variable among localities, the 19 

number of sequences sampled in two geographical locations is the limiting factor for the 20 

minimum number of the geographical state changes (s) that can be observed in the phylogeny. 21 

To overcome this problem, we used a modified Slatkin-Maddison’s s, denoted ‘σ’, to infer the 22 

level gene flow between two geographical states (e.g. A and B).  This is defined as, 23 

 24 



5 
 

where s is number of changes between state A and state B in the observed phylogeny, and sP is 1 

the number of changes between state A and state B occurring in the phylogeny simulated 2 

assuming panmixis.  In other words, sP determines the number of state changes that could be 3 

observed with the current phylogenetic structure and number of samples available in different 4 

geographical states.  This scaling turned Slatkin-Maddison’s s into a measure of the relative 5 

level of gene flow compared to the scenario of the completely unrestricted gene flow (i.e. 6 

panmixis).  Extreme σ estimates of 0 and 1 (they may possibly but rarely exceed 1) indicate no 7 

gene flow and panmixis, respectively. 8 

The values of s between different geographical states were estimated from each 9 

maximum likelihood gene phylogeny using the Fitch parsimony method (Fitch 1971) 10 

(implemented in the JAVA BEAST library).  Polytomies were resolved randomly 100 times and 11 

average s values were obtained.  To obtain sP, each pair of geographical states was randomly 12 

shuffled at the tree tips for 1,000 iterations, and ancestral geographical states were again 13 

reconstructed using parsimony.  This generated a distribution of sP under panmixis, and the 14 

average s is divided by the mean sP to give σ.  To account for topological uncertainty, 200 15 

bootstrap maximum likelihood trees were analyzed in the manner described above, and the 16 

upper and lower 95% estimates were taken as the resultant uncertainty of σ.  A JAVA computer 17 

program implementing this procedure is available upon request. 18 

 To study rates of gene flow within and between migratory flyways, transitions in 19 

geographical state, e.g. Minnesota ↔ Alaska, (estimated from the phylogeny using the 20 

parsimony method described above) were categorized as transitions in flyways, e.g. MF ↔ PF, 21 

depending on which flyway the geographical state belongs to (e.g. Minnesota belongs to 22 

Mississippi Flyway (MF), Alaska belongs to Pacific Flyway (PF), see Table S2).  Hence, s and 23 

sP were counted for each type of transition among four flyways (i.e. MF↔PF, MF↔MF, MF↔CF, 24 

MF↔AF, PF↔PF, PF↔CF, PF↔AF, CF↔CF, CF↔AF and AF↔AF). 25 
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 (iii) Rate of state transition (q) by Pagel’s maximum likelihood method.  Pagel 1 

(1994) developed a maximum likelihood method to study trait evolution (as discrete characters) 2 

along the phylogenetic tree (Pagel 1994).  We employed this method and treated the 3 

geographical states as the trait at every tip.  Formally, this method maximizes 4 

 5 

where L is the likelihood of the data set D (i.e. the trait states of the taxa) given the phylogeny T, 6 

and the model of evolution, M, of the trait states.  In the analysis of gene flow between each pair 7 

of different geographical states, we estimated the parameters for the state transition rates (q) in 8 

the model.  In total, there were 120 reversible transition rate parameters (e.g. qMN↔TX, qND↔OR, 9 

qSD↔WA) of interest given the 16 geographical states in the study.  The huge number of 10 

parameters made the model statistically untraceable.  To reduce the large number of 11 

parameters, we simplified the state transition model by reducing the rate parameters for two 12 

states to rate parameters for two flyways.  This constituted the flyway-specific rate model (FRM) 13 

of AIV gene flow.  In the FRM there were 10 reversible transition rate parameters for four 14 

flyways (and 6 parameters for the three flyway model (3-FRM), which combines MF and CF):  15 

qCF↔AF , qCF↔PF , qCF↔MF , qCF↔CF , qAF↔MF , qAF↔PF , qAF↔AF , qPF↔PF , qPF↔MF , qMF↔MF.  These parameters 16 

were estimated from the phylogeny with the highest likelihood score, using the discrete 17 

maximum likelihood method described by Pagel (1994) as implemented in the APE library 18 

(Paradis et al. 2004) running in the R package version 2.11.1.  Various starting values of 19 

transition rates were attempted (20, 10, 5, 1, 0.1 and 0.01), and the estimates with the best 20 

likelihoods were kept.  The flyway-specific rate estimates are shown in Table S3. 21 

 22 
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